Category O for Quantum Groups

نویسنده

  • HENNING HAAHR
چکیده

In this paper we study the BGG-categories Oq associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for O and for finite dimensional Uq-modules we are able to determine all irreducible characters as well as the characters of all indecomposable tilting modules in Oq. As a consequence of these results we are able to recover also a known result, namely that the generic quantum case behaves like the classical category O.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 50 30 22 v 1 3 1 M ar 1 99 5 Representations of Quantum Affine Algebras

Introduction Let G be a finite dimensional simple Lie algebra and G the corresponding affine Kač-Moody algebra. The notion of the fusion in the category O of representations of affine Kač-Moody algebras G was introduced ten years ago by physicists in the framework of Conformal Field Theory. This notion was developed in a number of mathematical papers (see, for example, [TUY]), where the notion ...

متن کامل

Affinization of Category O for Quantum Groups

Let g be a simple Lie algebra. We consider the category Ô of those modules over the affine quantum group Uq(ĝ) whose Uq(g)-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category Ô. In particular, we develop the theory of q-characters a...

متن کامل

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras. Abstract We show that if g Γ is the quantum tangent space (or quantum Lie algebra in the sense of Woronowicz) of a bicovariant first order differential calculus over a co-quasitriangular Hopf algebra (A, r), then a certain extension of it is a braided Lie algebra in the category of A-comodules. This...

متن کامل

Crossed Modules and Quantum Groups in Braided Categories

Let A be a Hopf algebra in a braided category C. Crossed modules over A are introduced and studied as objects with both module and comodule structures satisfying a compatibility condition. The category DY (C)AA of crossed modules is braided and is a concrete realization of a known general construction of a double or center of a monoidal category. For a quantum braided group (A,A,R) the correspo...

متن کامل

Subalgebras of Quasi-hereditary Algebras Arising from Algebraic and Quantum Groups

Quasi-hereditary algebras arise in several natural contexts. For example, their module categories often appear in connection with the representation theory of algebraic groups over elds of positive characteristic or of quantum groups at a root of unity. This point of view has been exploited by various authors, e. g., [CPS3{8], [G2], etc. Classical Schur algebras attached to the general linear g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011